# Phyx 320 Modern Physics

February 19, 2021

Reading: 38.1 - 38.4

Homework #5 and Reading Reflection Next Next Tuesday 11:59 pm

## Photoelectric Effect

Light can cause electrons to be ejected from metals

Found that the energy of a photon is E = hf where f is the frequency of light and  $h = 6.63 \times 10^{-34} J s$  is Planck's constant

Light now seen as discrete particles instead of continues wave



# Double-slit Experiment

Let's revisit the double slit experiment but with the photon picture

Set up coherent laser light shining through two small slits

The interference pattern is then imaged on a screen and we find multiple peaks

Peaks separated by  $\Delta y = \frac{\lambda L}{d}$ 

Wave model of light describes this observation perfectly

Each slit is seen as a point source which interfere at the screen



# Double-slit Experiment

Let's run this experiment with low light and a detector that's sensitive to single photons

Particle picture would say we shouldn't see any interference just two peaks at location of slits

But what still see interference pattern after a long time

Implies that each photon travels through both slits and interferes with itself

Detected at screen as single particles





# Photon Model of Light

Light is made of individual particles called photons

Photons are massless and travel at the speed of light in vacuum

Each photon has an energy of E = hf

Photons travel as waves but are detected as particles

The superposition of many photons yields a classical EM wave

## Matter Waves

If light is a particle and a wave, can this also be true for matter?

De Broglie proposed that if matter is described by a wave, then its wavelength must depend on its momentum

$$\lambda = \frac{h}{p} = \frac{h}{m\nu}$$

Double slit experiment shows the same interference when electrons are used instead of light

Matter is also a wave!





## Matter Waves

Light and matter are detected as individual particles

However, they move through the world as probability waves

• Where wave has maximum means, we have maximum probability to measure a particle

Run this through many particles leads to a classical wave





Single-electron Build-up of Interference Pattern

# Quantization of Energy

The wave nature of matter also changes their possible energies

Let's put a particle in a box and calculate its energy

Classically any energy can be in box  $E = \frac{1}{2}m v^2$ 

What wavelengths are allowed?



## Quantization of Energy

What's the allowed energies of these particles?



# Quantization of Energy

By putting a particle in a box, the energy is quantized

Energy:

$$E = \frac{n^2 h^2}{8mL^2}$$

Quantum number:

*n* = (number of nodes)-1

Ground state is what we call the lowest energy state

$$E_0 = \frac{h^2}{8mL^2}$$



## Quiz 4 Solutions

The Sun is at a temperature of 5,778 K. Human eyes are sensitive to light with wavelength between 380 to 750 nm. Below is a rendering of colors at corresponding wavelengths.

- If we treat the sun as a blackbody, what peak wavelength does it emit at? What color does this correspond to?
- For the Lyman series (m=1) emission of hydrogen, what n corresponds a wavelength of 97.26 nm?



## Quiz 3 Solutions