## Phyx 320 Modern Physics

February 1, 2021
Reading: 36.9-36.10
Homework \#2 and Reading Reflection Due Tuesday 11:59 pm

## Lorentz Transformation

Lorentz transformation tells you how space and time change in different frames

$$
\begin{gathered}
x^{\prime}=\gamma(x-v t) \\
\mathrm{t}^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right)
\end{gathered}
$$

Derived velocity transformation

$$
\begin{aligned}
u^{\prime}=\frac{u-v}{1-u v / c^{2}} & \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}
$$

## Relativistic Momentum

We know that the velocity transformation is different in special relativity so what about momentum?

Let's review momentum in Galilean Relativity

## Relativistic Momentum

Now for special relativity whose time should we use?

Everyone can agree on proper time

## Fundamental Speed Limit

Let's try to accelerate a particle faster
than light

## Fundamental Speed Limit

Let's try to accelerate a particle faster
than light

## Causality

The speed of light is the limit for any causal influence

Event A and Event B can only be related if information can flow from one event to the next

The speed limit for this information flow is the speed of light (speed of causality)

## Causality

Space-time interval can tell you if two
events could be causally related
$s^{2} \geq 0$ causally related, more time than
space
$s^{2}<0$ not causally related, more space than time

Homework Questions

Homework Questions

Homework Questions

Homework Questions

