Phyx 320 Modern Physics

February 1, 2021

Reading: 36.9 - 36.10

Homework #2 and Reading Reflection Due Tuesday 11:59 pm

Lorentz Transformation

Lorentz transformation tells you how space and time change in different frames

Derived velocity transformation

$$x' = \gamma(x - vt)$$
$$t' = \gamma(t - \frac{v}{c^2}x)$$

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$u' = \frac{u - v}{1 - uv/c^2}$$

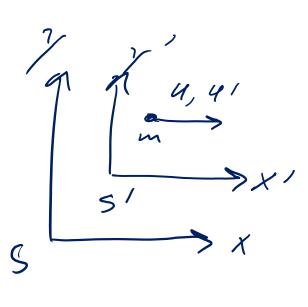
$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Relativistic Momentum

We know that the velocity transformation is different in special relativity so what about momentum?

Let's review momentum in Galilean Relativity

$$P = P' + mv$$


$$= m \frac{dx}{dt}$$

$$= m \frac{d}{dt} (x' + vt)$$

$$= m \frac{dx'}{dt} + mv$$

Galileen:

$$X' = X - v \in$$

 $X = X' + v \in$
 $x' = x' + v \in$

Relativistic Momentum

Now for special relativity whose time should we use?

Everyone can agree on proper time

Fundamental Speed Limit

Let's try to accelerate a particle faster

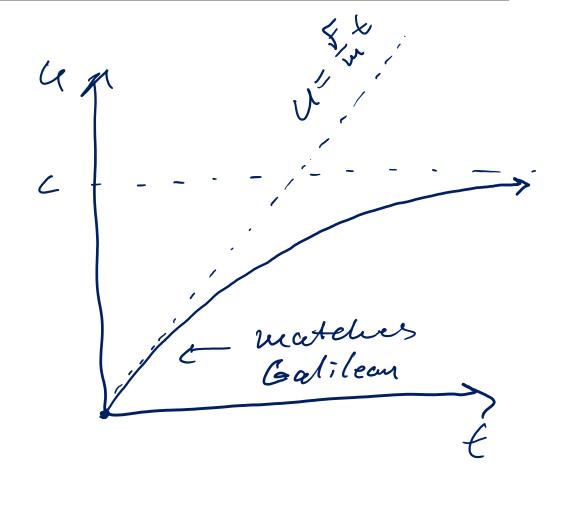
than light
$$P = \frac{1}{\sqrt{p}} \quad M \quad U$$

$$F = \frac{1}{\sqrt{1 - (\frac{u}{c})^2}} \quad F = \frac{c^2 p}{c^2 t}$$

$$(Ft)^2 (1 - (\frac{u}{c})^2) = (mu)^2$$

$$(Ft)^2 = (mu)^2 + (Ftu)^2$$

$$(Ft)^2 = [m^2 + (Ftu)^2] \quad U = \frac{Ft}{m}$$

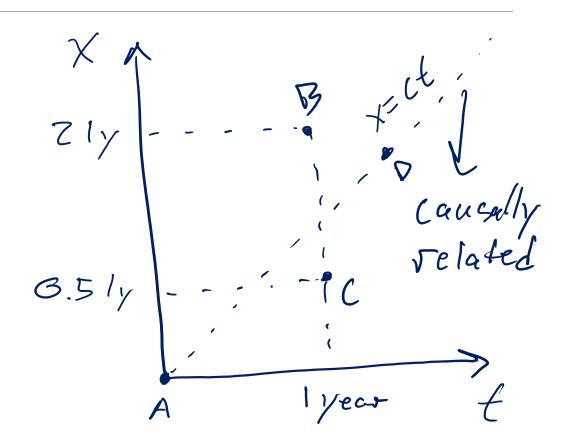

Fundamental Speed Limit

Let's try to accelerate a particle faster than light

$$u = \frac{Ft}{\int_{M^2+}^{2} (Ft)^2}$$

$$t=0, u=0$$

$$f = 0$$



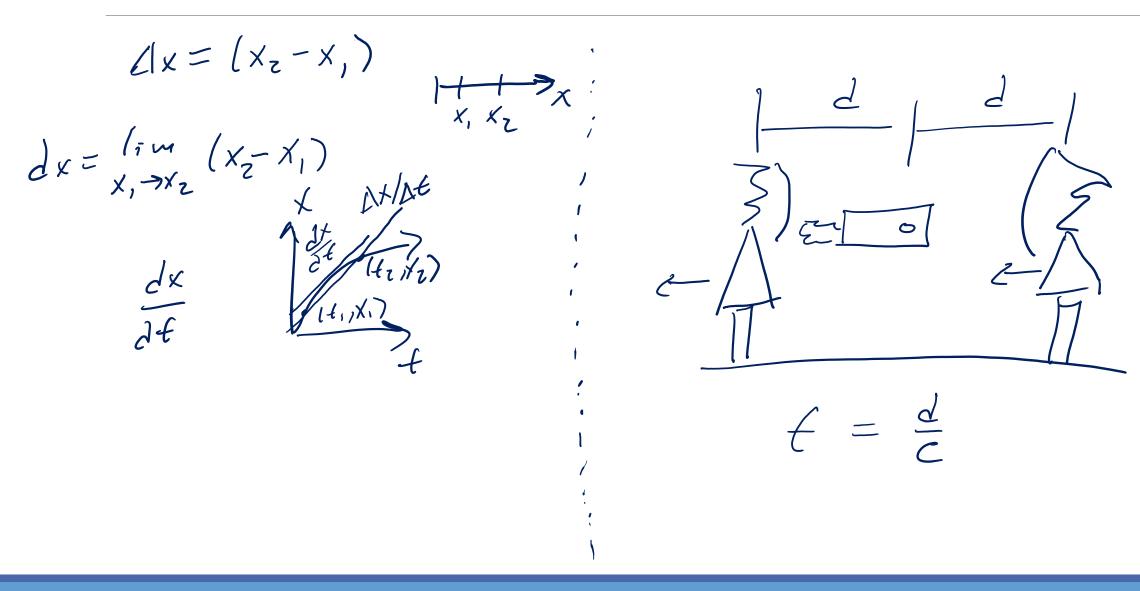
Causality

The speed of light is the limit for any causal influence

Event A and Event B can only be related if information can flow from one event to the next

The speed limit for this information flow is the speed of light (speed of causality)

Causality


Space-time interval can tell you if two events could be causally related

 $s^2 \ge 0$ causally related, more time than space

 $s^2 < 0$ not causally related, more space than time

Couselly

 $S^{2} = (c \Delta t)^{2} - (\Delta x)^{2}$ $S_{AB}^{z} = \left(C\left(lyeer\right)\right)^{z} - \left(0.5ly\right)^{z}$ $AB^{z} = \left(lyeer\right)^{z} - \left(0.5ly\right)^{z}$ = 0.75 1y2 SAC = (c(1/eer))2-(21/)2

$$\frac{d}{d} = 4.13 \times 10^{13} \text{ km}$$

$$\frac{d}{d} = 4.13 \times 10^{13} \text{ k$$