# Phyx 320 Modern Physics



April 2, 2021 Reading: 40.8-40.10 No Homework or Reading Reflection Due Next Week

#### Harmonic Oscillator



If we think back to the finite potential well, there was some probability that the particle could be found inside the classically forbidden region

In classically forbidden region, wavefunction decays exponentially:

$$\psi(x) = \psi_{edge} \; e^{-\frac{x-L}{\eta}}$$

Wavefunction decays with a characteristic length scale, penetration depth:

$$\eta = \frac{\hbar}{\sqrt{2m(U_0 - E)}}$$





Ensuring continuity at boundaries:

 $4_{1}(x=0) = 4_{2}(x=0)$  $4_{1}(x=0) = A_{1}cos($ 7,

 $\chi = \omega$  $z_{z}(x=\omega) = z_{z}(x=\omega)$  $(x=\omega)=A_{\mu}e$ 43 D COST

If we send in a particle from the left, what probability would it end up on the right of the barrier?

PL & ALIC PR & ARIZ

firmel 2 W/2

Particles can "tunnel" through potential barrier that would classically be forbidden

$$P_{tunnel} = e^{-\frac{2w}{\eta}}$$
$$\eta = \frac{\hbar}{\sqrt{2m(U_0 - E)}}$$

Chance of tunneling depends on the height and width of the potential and the energy of the incoming particle



$$E_{\downarrow} = 777 = 72\% = 777$$

Any "trapped" quantum particle has a probability of escaping

Has wide ranging implications

ch- 42

- Scanning tunneling microscope: able to image surfaces at the atomic level
- Spontaneous DNA mutation: protons can tunnel to new location making DNA mutate
- Radioactive decay: protons and neutrons can tunnel out of nucleus





