Phys 320
 Modern Physics
 $$
\begin{aligned} & \text { Quiz 5: } \\ & A \neq 10^{-11} \mathrm{~m} \\ & A=10^{-10} \mathrm{~m} \\ & \text { Nola } \mathrm{Wed} \end{aligned}
$$

 No lab

 No lab}March 29, 2021
Reading: 40.5-40.8
Homework \#9 and Reading Reflection Thursday 11:59 pm

Finite Potential Wells

Two types of states:

- Bound states $\left(E<U_{0}\right)$
- Free states $\left(E>U_{0}\right)$

In classically forbidden region, wavefunction decays exponentially:

$$
\psi(x)=\psi_{\text {edge }} e^{-\frac{x-L}{\eta}}
$$

Wavefunction decays with a characteristic length scale, penetration depth:

$$
\eta=\frac{\hbar}{\sqrt{2 m\left(U_{0}-E\right)}}
$$

Harmonic Oscillator

Harmonic potential:

$$
\mathrm{U}(x)=\frac{1}{2} \kappa x^{2}
$$

Classical systems:

- Mass on a spring
- Pendulums
- Acoustic systems
- Circuits

Classically can imagine the system being a ball rolling up and down the potential (without friction) Classically forbidden to be in regions where:

$$
U(x)>E
$$

Quantum systems:

- Molecular vibrations
- Particles in optical traps
- Photons
- Sound (phonons)

Harmonic Oscillator

Let's solve this classically:

$$
\begin{aligned}
& U=\frac{1}{2} k x^{2} \\
& F=-\frac{d u}{d x}=-\frac{1}{2} k(2 x) \\
& F=-k x \\
& \ddot{x}=-\frac{k}{m} x \ddot{x}=\frac{d}{d t} x \\
& \ddot{x}=\frac{d r}{d t^{2}} x
\end{aligned}
$$

Harmonic Oscillator

$$
\begin{aligned}
& \text { Let's solve this classically: } \\
& x=A \cos (\omega t+\phi) \\
& \frac{d^{2} x}{d t^{2}}=A\left(-\omega^{2} \cos (\omega t+\phi)\right) \\
& \underset{x}{x} \\
& \ddot{x}=-\frac{\pi}{m} x \\
& -\omega^{2} A \cos (\omega t+\phi)=-\frac{k}{m} A \cos (\omega t+\phi) \\
& \omega^{\omega^{2}=\frac{k}{m}} \quad \begin{array}{l}
\text { resonant } \\
\text { ornational } \\
\text { Frequency }
\end{array}
\end{aligned}
$$

Harmonic Oscillator

Now quantum mechanically:
$\psi_{1}(x)=A_{1} e^{-x^{2} / 2 b^{2}}$

$$
\begin{gathered}
\hat{1} \\
\text { gaussian }
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d^{2} \psi}{d x^{2}}=-\frac{2 m}{\hbar^{2}}(E-u(x)) \psi(x) \\
& \frac{d^{2} \psi}{d x^{2}}=-\frac{2 m}{\hbar^{2}}\left(E-\frac{1}{2} / 1 / x^{2}\right) \psi(x) \\
& \frac{d^{2} \psi}{d x^{2}}=\frac{d}{d x}\left[A_{1} e^{-x / 2 b^{2}}\left(-\frac{2 x}{2 b^{2}}\right)\right] \\
& =A_{1} e^{-x^{2} / 2 b^{2}}\left(-\frac{x}{b^{2}}\right)^{2} \\
& +A_{1} e^{-x^{2} / 2 b^{2}}\left(-1 / b^{2}\right) \\
& =A_{1} e^{-x^{2} / b^{2}}\left(x^{2} / 5^{4}-y / b^{2}\right)
\end{aligned}
$$

Now quantum mechanically:

$$
\begin{aligned}
& A_{1} e^{-x^{2} / 2 b^{2}}\left[\frac{x^{2}}{b^{4}}-1 / b^{2}\right]=-\frac{2 m}{\hbar^{2}}\left(E-\frac{1}{2} k x^{2}\right) A, e^{-x^{2} / 2 b^{2}} \\
& \frac{x^{2}}{b^{4}}-\frac{1}{b^{2}}=\frac{k m}{\hbar^{2}} x^{2}-\frac{2 m E}{\hbar^{2}} \\
&\left(\frac{1}{b^{4}}-\frac{k m}{\hbar^{2}}\right) x^{2}+\left(\frac{2 m E}{\hbar^{2}}-\frac{1}{b^{2}}\right)=0 \\
& v \omega=\sqrt{k / m} \\
& \frac{1}{b^{4}}=\frac{k m}{\hbar^{2}}<m \omega^{2} \\
& b^{4}=\frac{\hbar^{2}}{m^{2} \omega^{2}} \Rightarrow b=\sqrt{\frac{\hbar}{m \omega}}
\end{aligned}
$$

Harmonic Oscillator

Now quantum mechanically

$$
b=\sqrt{\frac{\hbar}{m \omega}}-\frac{2 m E_{1}}{\frac{\hbar^{2}}{}-\frac{1}{b^{2}}=0} \begin{array}{r}
\frac{2 m E_{1}}{\hbar^{2}}=\frac{m \omega}{\hbar} \\
E_{1}=\frac{1}{2} \hbar \omega
\end{array}
$$

Harmonic Oscillator

Higher states:

$$
\begin{aligned}
& \psi_{1}(x)=A_{1} e^{-\frac{x^{2}}{2 b^{2}}} \quad \begin{array}{l}
\text { Hermite } \\
\text { Polynomials }
\end{array} \\
& \psi_{2}(x)=A_{2} \frac{x}{b} e^{-\frac{x^{2}}{2 b^{2}}} \\
& \psi_{3}(x)=A_{3}\left(1-\frac{2 x^{2}}{b^{2}}\right) e^{-\frac{x^{2}}{2 b^{2}}} \\
& b=\sqrt{\frac{\hbar}{2 \omega \omega}}
\end{aligned}
$$

Energies follow:

$$
E_{n}=\left(n-\frac{1}{2}\right) \hbar \omega
$$

Harmonic Oscillator

We can also use Heisenberg's uncertainty principle to derive the ground state energy:

$$
\begin{array}{rlr}
E=k+u & \Delta x \Delta p \geq \hbar / 2 \\
& =\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2} & \\
E_{\text {minimum }} & \Delta x \Delta p=\hbar / 2 \\
E_{1} & =\frac{(\Delta p)^{2}}{2 m}+\frac{1}{2} k(\Delta x)^{2} & x=0+\Delta x \\
& =\frac{\hbar^{2}}{8 m} \frac{1}{\Delta x^{2}}+\frac{1}{2} k \Delta x^{2} & p=0+\Delta p
\end{array}
$$

Harmonic Oscillator

We can also use Heisenberg's uncertainty principle to derive the ground state energy:

$$
\begin{aligned}
& E_{1}=\frac{\hbar_{2}}{8 m \Delta x^{2}}+\frac{1}{2} K \Delta x^{2} \\
& \Delta v^{20} y^{2} \quad \frac{d E_{1}}{d(\Delta x)}=0=-2 \frac{\hbar^{2}}{8 m \Delta x^{3}}+k \Delta x \\
& k=\omega^{2} m \\
& \frac{\hbar^{2}}{4 m}=k \Delta x^{4} \\
& \begin{array}{l}
\Delta x^{4}=\frac{\hbar^{2}}{4 m^{2} \omega^{2}} \\
\Delta x=\sqrt{\frac{\hbar}{2} w} \Rightarrow \Delta p=\frac{\hbar}{2} \frac{1}{\Delta x}
\end{array} \\
& =\frac{\pi}{2} \sqrt{\frac{2 m \omega}{\hbar}}=\sqrt{\frac{\pi m \omega}{2}}
\end{aligned}
$$

Harmonic Oscillator

We can also use Heisenberg's uncertainty principle to derive the ground state energy:

$$
\begin{aligned}
E_{1} & =\frac{\hbar^{2}}{8 m \Delta x^{2}}+\frac{1}{2} \kappa \Delta x^{2} \quad \Delta x=\sqrt{\frac{\hbar}{2 m \omega}} \\
& =\frac{\hbar^{2}}{8 m} \frac{2 m \omega}{\hbar}+\frac{1}{2} k \frac{\hbar}{2 m \omega} \quad K=m \omega^{2} \\
& =\frac{1}{4} \hbar \omega+\frac{1}{4} \hbar \omega \\
& =\frac{1}{2} \hbar \omega
\end{aligned}
$$

Harmonic Oscillator

Ground state energy can be determined by Heisenberg Uncertainty Principle

$$
E_{1}=\frac{1}{2} \hbar \omega
$$

Since this is non-zero, a particle in a harmonic trap can never be stationary leading to zero-point motion

Lowest energy level restricted by Heisenberg uncertainty principle

This zero-point energy keeps liquid Helium from freezing at atmospheric pressures, even at absolute zero

True for any particle that is confined to a range of locations

Homework Questions

Homework Questions

Homework Questions

Homework Questions

