Phyx 320 Modern Physics

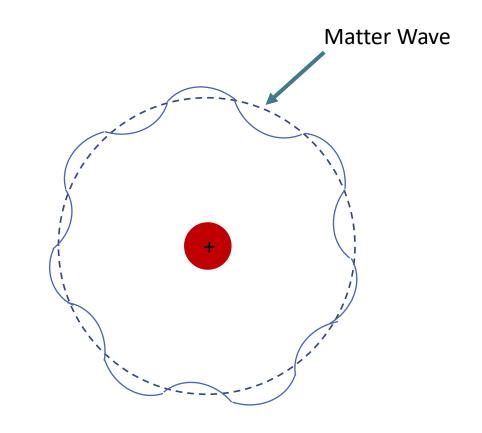
March 1, 2021

Reading: 38.5 - 38.7

Homework #5 and Reading Reflection Tuesday 11:59 pm

Radii of electron orbit in hydrogen is quantized

$$r_n = a_B n^2$$
 $n = 1, 2, 3 \dots$


Defined Bohr radius

$$a_B = \frac{4\pi\epsilon_0\hbar^2}{me^2} = 0.0529 \ nm$$

Examples of electron radius:

$$r_1 = 1a_B = 0.053 nm$$

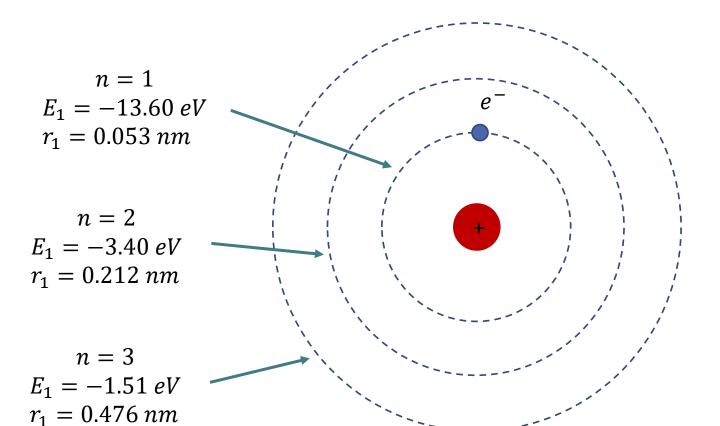
 $r_2 = 4a_B = 0.212 nm$
 $r_3 = 9a_B = 0.476 nm$

Hydrogen atoms at other radii can not exist

Let's derive the energy levels of hydrogen

Let's derive the energy levels of hydrogen

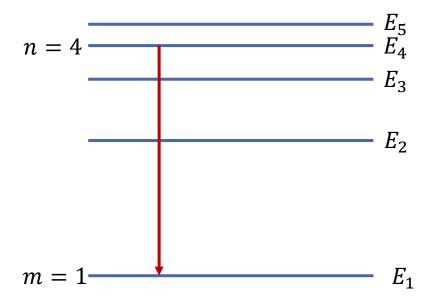
Can describe hydrogen states by one quantum number: *n*


Energy follows $\sim 1/n^2$

Radius follows $\sim n^2$

Each n corresponds to a unique energy and radius

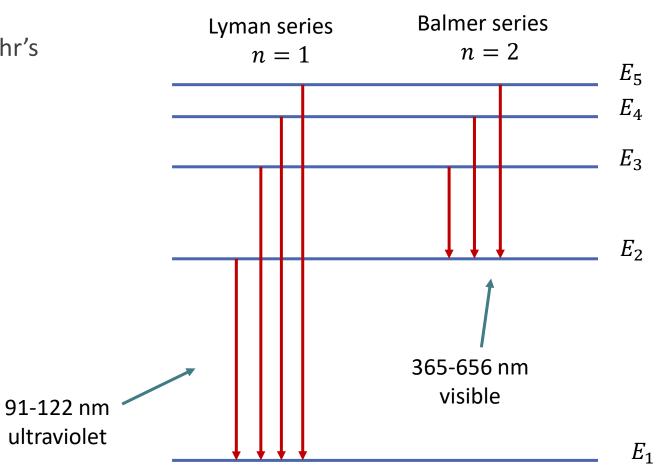
Energy is negative since the electric potential energy is only zero when $r \to \infty$


Requires energy to pull the electron away from the proton

What about angular momentum?

Hydrogen Spectrum

Does this model describe the hydrogen spectrum?


Hydrogen Spectrum

Derived the Balmer formula from Bohr's model of hydrogen:

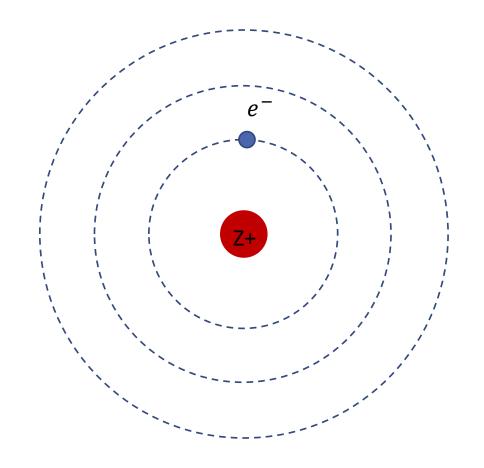
$$\lambda = \frac{8\pi\epsilon_0 a_B hc}{e^2} \frac{1}{\frac{1}{m^2} - \frac{1}{n^2}}$$

Lyman series final state: n = 1

Balmer series final state: n = 2

Hydrogen Like Atoms

Bohr model can be used for other elements as long as they have only one electron


Atomic number = number of protons

$$U_e = -\frac{Ze^2}{4\pi\epsilon_0 r}$$

Shifts all equations that we've derived

Energy and emission spectrum:

$$E = -13.60 \text{ eV} \frac{Z^2}{n^2}$$
$$\lambda_0 = \frac{91.18 \text{ nm}}{Z^2}$$

Quiz 5

- 1. What is the de Broglie wavelength for a neutron ($m_n = 1.675 \times 10^{-27} \ kg$) traveling at 10 m/s?
- 2. What is the ground state energy of a neutron in a one-dimensional box with a length of 1 angstrom $(10^{-11} m)$?

Quiz 5

- 1. What is the de Broglie wavelength for a neutron ($m_n = 1.675 \times 10^{-27} \ kg$) traveling at 10 m/s?
- 2. What is the ground state energy of a neutron in a one-dimensional box with a length of 1 angstrom $(10^{-11} m)$?