Phyx 320 Modern Physics

March 5, 2021
Reading: 38.5-38.7
Homework \#6 and Reading Reflection Next Tuesday 11:59 pm

Bohr Hydrogen

Radii of electron orbit in hydrogen is quantized

$$
r_{n}=a_{B} n^{2} \quad n=1,2,3 \ldots
$$

Defined Bohr radius

$$
a_{B}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m e^{2}}=0.0529 \mathrm{~nm}
$$

Examples of electron radius:

$$
\begin{aligned}
& r_{1}=1 a_{B}=0.053 \mathrm{~nm} \\
& r_{2}=4 a_{B}=0.212 \mathrm{~nm} \\
& r_{3}=9 a_{B}=0.476 \mathrm{~nm}
\end{aligned}
$$

Hydrogen atoms at other radii can not exist

Bohr Hydrogen

Let's derive the energy levels of hydrogen

Bohr Hydrogen

$$
\begin{aligned}
& \text { Let's derive the energy levels of hydrogen } \\
& v=a_{B} n^{2}(u=1,2,3 \ldots E \frac{1}{2} m v^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0}^{v}} \\
&\left.v=\frac{\hbar^{2}}{m a_{B}} \frac{1}{n}\right)^{2}=\frac{1}{2} m\left(\frac{\hbar}{m a_{B}} \frac{1}{n}\right)^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0} a_{B}^{n^{2}}} \\
&=-\frac{1}{n^{2}}\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{2 a_{B}}\right) \\
& q \\
& 13.60 \mathrm{eV} \\
&=2.18 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

Bohr Hydrogen

Can describe hydrogen states by one quantum number: n

Energy follows $\sim 1 / n^{2}$
Radius follows $\sim n^{2}$
Each n corresponds to a unique energy and radius

Energy is negative since the electric potential energy is only zero when $r \rightarrow \infty$

Requires energy to pull the electron away from the proton

$$
n=1
$$

$$
E_{1}=-13.60 \mathrm{eV}
$$

$$
r_{1}=0.053 \mathrm{~nm}
$$

$$
\begin{gathered}
n=2 \\
E_{1}=-3.40 \mathrm{eV} \\
r_{1}=0.212 \mathrm{~nm} \\
\\
\\
n=3 \\
E_{1}=-1.51 \mathrm{eV} \\
r_{1}=0.476 \mathrm{~nm}
\end{gathered}
$$

$$
u_{e}=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r}
$$

Bohr Hydrogen

What about angular momentum?

$$
L=m v r
$$

de Broglie:
$\left(2 \pi v=n \lambda^{2}=u \frac{h}{m v}\right) m v$

$$
2 \pi m v v=n h \quad, \quad t=1,2,3 \ldots
$$

$$
\begin{aligned}
L=m v v=u & \frac{h}{2 \pi}=n \\
& t_{A} \\
& \text { quantized } \quad \begin{array}{l}
\text { quantum } \\
\text { angular } \\
\text { mamentem }
\end{array}
\end{aligned}
$$

Hydrogen Spectrum

Does this model describe the hydrogen spectrum?

$$
\begin{aligned}
& F=\frac{E_{i}-E_{F}}{h}=\frac{E_{n}-E_{m}}{h}
\end{aligned}
$$

$$
\begin{aligned}
& f=\frac{e^{2}}{8 \pi h \varepsilon_{0} a_{B}}\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 91.12 \mathrm{~nm} \\
& \lambda=\frac{c}{f}=\frac{8 \pi h c \varepsilon_{0} a_{B}}{e^{2}} \leftarrow \frac{1}{\frac{1}{m^{2}}-\frac{1}{n^{2}}} \leftarrow \begin{array}{c}
\text { palmer } \\
\text { Formula }
\end{array}
\end{aligned}
$$

Hydrogen Spectrum

Derived the Balmer formula from Bohr's model of hydrogen:

$$
\lambda=\frac{8 \pi \epsilon_{0} a_{B} h c}{e^{2}} \frac{1}{\frac{1}{m^{2}}-\frac{1}{n^{2}}}
$$

Lyman series final state: $\mathfrak{W} \boldsymbol{M}=1$
Balmer series final state: $\mathbb{M}=2$

91-122 nm ultraviolet

Lyman series
$n=1$
Balmer series

$$
v q=2
$$

365-656 nm visible

Hydrogen Like Atoms

Bohr model can be used for other elements as long as they have only one electron

Atomic number = number of protons

$$
U_{e}=-\frac{Z e^{2}}{4 \pi \epsilon_{0} r}
$$

Shifts all equations that we've derived Energy and emission spectrum:

$$
\begin{gathered}
E=-13.60 \mathrm{eV} \frac{Z^{2}}{n^{2}} \\
\lambda_{0}=\frac{91.18 \mathrm{~nm}}{Z^{2}}
\end{gathered}
$$

Quiz 5

1. What is the de Broglie wavelength for a \quad. neutron ($m_{n}=1.675 \times 10^{-27} \mathrm{~kg}$) traveling at $10 \mathrm{~m} / \mathrm{s}$?
2. What is the ground state energy of a neutron in a one-dimensional box with a length of 1 angstrom $\left(10^{-11} \mathrm{~m}\right)$?

$$
\begin{aligned}
\lambda & =\frac{h}{p}=\frac{h}{m v} \\
\lambda & =3.96 \times 10^{-8} \mathrm{~m} \\
& =39.6 \mathrm{um}
\end{aligned}
$$

2.

$$
\begin{aligned}
E_{1} & =\frac{4^{2}}{8 \mathrm{~mL}^{2}} \quad L=1 A=10^{-11} \mathrm{~m} \\
& =3.28 \times 10^{-21} \mathrm{~J} \\
& =20.45 \mathrm{meV}
\end{aligned}
$$

Quiz 5

1. What is the de Broglie wavelength for a neutron ($m_{n}=1.675 \times 10^{-27} \mathrm{~kg}$) traveling at $10 \mathrm{~m} / \mathrm{s}$?
2. What is the ground state energy of a neutron in a one-dimensional box with a length of 1 angstrom $\left(10^{-11} \mathrm{~m}\right)$?

Homework Questions

$$
\vec{l}=\vec{r} \times \vec{p}
$$

$$
\begin{aligned}
& E_{2} \Rightarrow n=2 \\
& l_{2}=2 \hbar
\end{aligned}
$$

$$
\begin{aligned}
& \vec{v}=v \hat{r} \\
& \vec{l}=r \hat{v} \times m v \hat{\phi}=\operatorname{vmv} \hat{z}
\end{aligned}
$$

Homework Questions

Homework Questions

Homework Questions

