Phyx 320 Modern Physics

March 5, 2021

Reading: 38.5 – 38.7

Homework #6 and Reading Reflection Next Tuesday 11:59 pm

Radii of electron orbit in hydrogen is quantized

$$r_n = a_B n^2$$
 $n = 1, 2, 3 \dots$

Defined Bohr radius

$$a_B = \frac{4\pi\epsilon_0\hbar^2}{me^2} = 0.0529 nm$$

Examples of electron radius:

 $r_1 = 1a_B = 0.053 nm$ $r_2 = 4a_B = 0.212 nm$ $r_3 = 9a_B = 0.476 nm$

Hydrogen atoms at other radii can not exist

Let's derive the energy levels of hydrogen

Can describe hydrogen states by one quantum number: n

Energy follows ~ $1/n^2$

Radius follows ~ n^2

Each *n* corresponds to a unique energy and radius

Energy is negative since the electric potential energy is only zero when $r \to \infty$

Requires energy to pull the electron away from the proton

What about angular momentum?

de Broglie:

$$(Z_{TTT} = u\lambda' = u\frac{h}{mv})mv$$

 $Z_{TT}mvr = uh$ $u=1, 2, 3...$
 $L=mvr = u\frac{h}{2T} = u\frac{h}{\pi}$ quantum
quantized angular
mangular

Hydrogen Spectrum

Does this model describe the hydrogen spectrum?

Hydrogen Spectrum

Derived the Balmer formula from Bohr's model of hydrogen:

$$\lambda = \frac{8\pi\epsilon_0 a_B hc}{e^2} \frac{1}{\frac{1}{m^2} - \frac{1}{n^2}}$$

Balmer series Lyman series m = 2m = 1 E_5 E_4 E_3 E_2 365-656 nm visible 91-122 nm ultraviolet E_1

Lyman series final state: M = 1

Balmer series final state: $\mathbf{M} = 2$

Hydrogen Like Atoms

Bohr model can be used for other elements as long as they have only one electron

Atomic number = number of protons

$$U_e = -\frac{Ze^2}{4\pi\epsilon_0 r}$$

Shifts all equations that we've derived Energy and emission spectrum:

$$E = -13.60 \ eV \frac{Z^2}{n^2}$$
$$\lambda_0 = \frac{91.18 \ nm}{Z^2}$$

Quiz 5

- 1. What is the de Broglie wavelength for a neutron ($m_n = 1.675 \times 10^{-27} kg$) traveling at 10 m/s?
- 2. What is the ground state energy of a neutron in a one-dimensional box with a length of 1 angstrom $(10^{-11} m)$?

7.

Ι. ωv J = 3.96 ×10⁻⁸ m = 39.6 um $\frac{h^{c}}{8mL^{2}} \qquad L = IA = 10^{-11} \text{m}$ $= 3.28 \times 10^{-2}$ = 20.45 meV

Quiz 5

- 1. What is the de Broglie wavelength for a neutron ($m_n = 1.675 \times 10^{-27} kg$) traveling at 10 m/s?
- 2. What is the ground state energy of a neutron in a one-dimensional box with a length of 1 angstrom $(10^{-11} m)$?

 $E_{2} \Rightarrow h = 2$ $L_{2} = 2 t_{1}$ $| = \vec{\nabla} \times \vec{P}$